Machinability Assessment of Hybrid Nano Cutting Oil for Minimum Quantity Lubrication (MQL) in Hard Turning of 90CrSi Steel

نویسندگان

چکیده

Friction and very high temperature are still the major challenges in hard machining technology they greatly affect cutting efficiency. The application of MQL (minimum quantity lubrication) method, using nanoparticles order to improve cooling lubrication performance base oil, has proven be a promising solution. Hence, this work aimed investigate effectiveness Al2O3/MoS2 hybrid nanofluid Al2O3 MoS2 mono nanofluids turning 90CrSi steel (60–62 HRC) under an environment. Box-Behnken experimental design was used for three input variables, including nanoparticle concentration, air pressure, flow rate. Their influences on surface roughness forces were studied. According obtained results, it shown that nano oils contributes achieving better than use nanofluids. In particular, lower is reported values Ra, back force Fp, Fc smaller more stable those due improvement characteristics. Thus, provides novel approach study machining.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Minimum Quantity Lubrication (MQL) for Different Coating Tools during Turning of TC11 Titanium Alloy

The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al₂O₃/TiAlN-coated tool were also tested as a comparison. Furthermo...

متن کامل

Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network wit...

متن کامل

Minimum Quantity Lubrication (MQL) in Machining: Benefits and Drawbacks

Micro lubrication or also known as minimum quantity lubrication (MQL) serves as an alternative to flood cooling by reducing the volume of cutting fluid used in the machining process; but not without significant health concerns. Flood cooling is primarily used to cool and lubricate the cutting tool and work piece interface during machining process. The adverse health effects caused by the use of...

متن کامل

Optimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature

The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...

متن کامل

Analysis of effect of Minimum Quantity Lubrication on different machining parameters Cutting Force, Surface Roughness and Tool Wear by Hard Turning of AISI-4340 Alloy Steel a Review

This paper deals with the study of various machining process and show the effect of different cutting parameters on the properties of material. There are several important factors in the product quality which are surface finish, cutting temperature, tool life and coolant quality. The use of coolant generally causes life of tools and it also maintains work piece surface properties without damage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lubricants

سال: 2023

ISSN: ['2075-4442']

DOI: https://doi.org/10.3390/lubricants11020054